skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Savage, Blair"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Magellanic Stream (MS), a tail of diffuse gas formed from tidal and ram pressure interactions between the Small and Large Magellanic Clouds (SMC and LMC) and the Halo of the Milky Way, is primarily composed of neutral atomic hydrogen (HI). The deficiency of dust and the diffuse nature of the present gas make molecular formation rare and difficult, but if present, could lead to regions potentially suitable for star formation, thereby allowing us to probe conditions of star formation similar to those at high redshifts. We search for HCO+ ,HCN,HNC,andC2H using the highest sensitivity observations of molecular absorption data from the Atacama Large Millimeter Array (ALMA) to trace these regions, comparing with HI archival data from the Galactic Arecibo L-Band Feed Array (GALFA) HI Survey and the Galactic All Sky Survey (GASS) to compare these environments in the MS to the HI column density threshold for molecular formation in the Milky Way. We also compare the line of sight locations with confirmed locations of stars, molecular hydrogen, and OI detections, though at higher sensitivities than the observations presented here. 
    more » « less
  2. Abstract We report the first direct detection of molecular hydrogen associated with the Galactic nuclear wind. The Far-Ultraviolet Spectroscopic Explorer spectrum of LS 4825, a B1 Ib–II star at l , b = 1.67°,−6.63° lying d = 9.9 − 0.8 + 1.4 kpc from the Sun, ∼1 kpc below the Galactic plane near the Galactic center, shows two high-velocity H 2 components at v LSR = −79 and −108 km s −1 . In contrast, the FUSE spectrum of the nearby (∼0.6° away) foreground star HD 167402 at d = 4.9 − 0.7 + 0.8 kpc reveals no H 2 absorption at these velocities. Over 60 lines of H 2 from rotational levels J = 0 to 5 are identified in the high-velocity clouds. For the v LSR = −79 km s −1 cloud we measure total log N (H 2 ) ≥ 16.75 cm −2 , molecular fraction f H 2 ≥ 0.8%, and T 01 ≥ 97 and T 25 ≤ 439 K for the ground- and excited-state rotational excitation temperatures. At v LSR = −108 km s −1 , we measure log N (H 2 ) = 16.13 ± 0.10 cm −2 , f H 2 ≥ 0.5%, and T 01 = 77 − 18 + 34 and T 25 = 1092 − 117 + 149 K, for which the excited-state ortho- to para-H 2 is 1.0 − 0.1 + 0.3 , much less than the equilibrium value of 3 expected for gas at this temperature. This nonequilibrium ratio suggests that the −108 km s −1 cloud has been recently excited and has not yet had time to equilibrate. As the LS 4825 sight line passes close by a tilted section of the Galactic disk, we propose that we are probing a boundary region where the nuclear wind is removing gas from the disk. 
    more » « less